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Abstract

The mass of the lightest CP-even Higgs boson of the minimal supersymmetric extension

of the Standard Model (MSSM) has previously been computed including O(��
s
) two-

loop contributions by an on-shell diagrammatic method, while approximate analytic

results have also been obtained via renormalization-group-improved e�ective potential
and e�ective �eld theory techniques. Initial comparisons of the corresponding two-loop

results revealed an apparent discrepancy between terms that depend logarithmically
on the supersymmetry-breaking scale, and di�erent dependences of the non-logarithmic

terms on the squark mixing parameter, X
t
. In this paper, we determine the origin of

these di�erences as a consequence of di�erent renormalization schemes in which both
calculations are performed. By re-expressing the on-shell result in terms of MS pa-

rameters, the logarithmic two-loop contributions obtained by the di�erent approaches
are shown to coincide. The remaining di�erence, arising from genuine non-logarithmic

two-loop contributions, is identi�ed, and its e�ect on the maximal value of the lightest

CP-even Higgs boson mass is discussed. Finally, we show that in a simple analytic

approximation to the Higgs mass, the leading two-loop radiative corrections can be ab-

sorbed to a large extent into an e�ective one-loop expression by evaluating the running
top quark mass at appropriately chosen energy scales.



1 Introduction

In the minimal supersymmetric extension of the Standard Model (MSSM), the mass

of the lightest CP-even Higgs boson, m
h
, is calculable as a function of the MSSM

parameters. At tree-level, m
h
is a function of the CP-odd Higgs boson mass, m

A
, and

the ratio of vacuum expectation values, tan�. Moreover, the tree-level value of m
h
is

bounded bym
h
� m

Z
j cos 2�j, which is on the verge of being ruled out by the LEP Higgs

search [1]. When radiative corrections are taken into account,m
h
depends in addition on

the MSSM parameters that enter via virtual loops. The radiatively corrected value ofm
h

depends most sensitively on the parameters of the top-squark (stop) sector: the average

squared-mass of the two stops, M2
S
, and the o�-diagonal stop squared-mass parameter,

m
t
X

t
. The stop mixing parameter is X

t
� A

t
� � cot �, where A

t
is the coe�cient

of the soft-supersymmetry-breaking stop-Higgs boson tri-linear interaction term and �

is the supersymmetric Higgs mass parameter. The radiatively-corrected value of m2
h

is enhanced by a factor of G
F
m

4
t
and grows logarithmically as M

S
increases [2]. In

particular, the upper bound for m
h
(which is achieved when m

A
� m

Z
and tan � � 1)

is signi�cantly increased beyond its tree-level upper bound of m
Z
.

The complete one-loop diagrammatic computation of m
h
has been carried out in

refs. [3{5]. However, for M
S
� m

t
, the logarithmically enhanced terms are signi�cant

(in particular, the most signi�cant logarithmic terms are those that are enhanced by
the G

F
m

4
t
pre-factor noted above), in which case leading-logarithmic corrections from

higher-loop contributions must be included. These terms can be summed via renormal-

ization group techniques. The result of these corrections is to reduce the one-loop upper
bound onm

h
. ForM

S
<� O(1 TeV), it is found thatmh

<� 125 GeV, where the maximum
is reached at large m

A
and tan � when M

S
is maximal and X

t
' �p6M

S
(the so-called

\maximal-mixing" value for stop mixing). However, sub-leading two-loop corrections

may not be negligible, and a more complete two-loop computation is required.

The full diagrammatic calculations lead to very complicated expressions for the ra-
diatively corrected value of m

h
. E�ective potential and e�ective �eld theory techniques

have been developed which can extract the dominant contributions to the Higgs mass
radiative corrections (when M

S
is large), resulting in a simpler analytic expression for

m
h
. These methods also provide a natural setting for renormalization group improve-

ment. Although the exact solution of the renormalization group equations (RGEs) must

be obtained numerically, the iterative solution of the RGEs can easily yield simple ana-

lytic expressions for the one-loop and two-loop leading logarithmic contributions to m
h
.

These leading logarithms can also be obtained by expanding the complete diagrammatic

results in the limit of M
S
� m

t
, and this serves as an important check of the various

computations.

The e�ective potential method [6] provides an important tool for evaluating the
Higgs mass beyond the tree-level. It can be used to provide a short-cut for the cal-

culation of certain combinations of Higgs boson two-point functions that arise in the

diagrammatic computation. The e�ective �eld theory (EFT) approach [7] provides a
powerful method for isolating the leading terms of the Higgs mass radiative corrections

when M
S
� m

t
. In this formalism, one matches the full supersymmetric theory above

M
S
to an e�ective Standard Model with supersymmetric particles decoupled below M

S
.
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The Standard Model couplings in the MS scheme are �xed at M
S
by supersymmetric

matching conditions. Standard Model RGEs are then used to evolve these couplings

down to the electroweak scale (either m
t
or m

Z
). While the stops are decoupled at

M
S
, the stop mixing (so-called \threshold") e�ects are incorporated by modifying the

matching conditions at M
S
. With the use of e�ective potential techniques, the EFT

formalism and the iteration of the RGEs to two-loops, the leading contributions to the

radiatively-corrected Higgs mass was obtained in analytic form in refs. [8{11] These

results included the full one-loop leading logarithmic corrections and one-loop leading

squark-mixing threshold corrections, the two-loop leading double-logarithmic correc-

tions and the two-loop leading logarithmic squark-mixing threshold corrections up to

O(h2
t
�
s
) and O(h4

t
), where h

t
is the Higgs{top quark Yukawa coupling.

In order to extend the above results, genuine two-loop computations are required.

The �rst two-loop diagrammatic computation was performed in ref. [12] in the limit of
m

A
� m

Z
and tan � � 1 (where m

h
attains its maximal bound), where only terms

of O(h4
t
) and O(h2

t
�
s
) were evaluated, and all squark mixing e�ects were neglected.

More recently, a more complete two-loop diagrammatic computation of the dominant
contributions at O(��

s
) to the neutral CP-even Higgs boson masses has been per-

formed [13{15]. This result was obtained for arbitrary values of m
A
, tan� and the

stop-mixing parameter X
t
. This two-loop result, which had been obtained �rst in the

on-shell scheme, was subsequently combined [14, 15] with the complete diagrammatic

one-loop on-shell result of ref. [4] and the leading two-loop Yukawa corrections of O(h4
t
)

obtained by the EFT approach [8{11]. The resulting two-loop expression was then
expressed in terms of the top-quark mass in the MS scheme. By comparing the �nal

expression with the results obtained in refs. [8{11], it was shown that the upper bound
on the lightest Higgs mass was shifted upwards by up to 5 GeV, an e�ect that is more
pronounced in the low tan � region.

Besides the shift in the upper bound of m
h
, apparent deviations between the ex-

plicit diagrammatic two-loop calculation and the results of the EFT computation were

observed in the dependence of m
h
on the stop-mixing parameter X

t
. While the value of

X
t
that maximizes the lightest CP-even Higgs mass is (X

t
)max ' �

p
6M

S
� �2:4M

S

in the results of refs. [8{11], the corresponding on-shell two-loop diagrammatic compu-
tation found a maximal value for m

h
at (X

t
)max � 2M

S
.1 Moreover, in the results of

refs. [8{11], m
h
is symmetric under X

t
! �X

t
and has a (local) minimum at X

t
= 0.

In contrast, the two-loop diagrammatic computation yields m
h
values for positive and

negative X
t
that di�er signi�cantly from each other and the local minimum in m

h
is

shifted slightly away from X
t
= 0 [16]. A similar conclusion was reached in ref. [17],

which used an e�ective potential calculation to extend the results of ref. [12] to the case
of non-zero stop mixing.

A closer comparison of results of the EFT computation of the radiatively-corrected

Higgs mass and the two-loop diagrammatic computation at �rst sight revealed a sur-

prising discrepancy. Namely, the two-loop leading logarithmic squark-mixing threshold

corrections at O(h2
t
�
s
) of the former do not appear to match the results of the latter.

In this paper, we shall show that this apparent discrepancy in the leading-logarithmic

1A local maximum for mh is also found for Xt ' �2MS , although the corresponding value of mh

at Xt ' +2MS is signi�cantly larger [15,16].
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contributions is caused by the di�erent renormalization schemes employed in the two
approaches. While the original two-loop diagrammatic computations of ref. [13] were

performed in an on-shell scheme, the results of the EFT approach are most naturally

carried out in the MS scheme. In comparing results obtained within di�erent renor-

malization schemes in terms of the (not directly observable) parameters X
t
and M

S
,

one has to take into account the fact that these parameters are renormalization-scheme

dependent. The e�ect of this scheme dependence �rst enters into the calculation of m
h

at the two-loop level. In order to allow a detailed comparison between the results of the

di�erent approaches we derive relations between these parameters in the two di�erent

schemes. We apply these relations to re-express the diagrammatic on-shell result in

terms of MS parameters. In this way we show that the leading logarithmic two-loop

contributions in the two approaches in fact coincide. The remaining numerical di�erence

between the diagrammatic calculation in the MS scheme and the result obtained by the
EFT approach can thus be identi�ed with new threshold e�ects due to non-logarithmic

two-loop terms contained in the diagrammatic result. We furthermore show that in the
analytic approximation employed in this paper, the dominant numerical contribution
of these terms can be absorbed into an e�ective one-loop expression by choosing an

appropriate scale for the running top-quark mass in di�erent terms of the expression.

This paper is organized as follows. To simplify the analysis, we focus completely
on the radiatively corrected Higgs squared-mass in the \leading m4

t
approximation" (in

which only the dominant loop corrections proportional to m
2
t
h
2
t
� G

F
m

4
t
are kept).

In addition, we choose a very simple form for the stop squared-mass matrix, which
signi�cantly simpli�es the subsequent analysis while maintaining the most important

features of the general result. In section 2 we sketch the derivation of the EFT result
for the radiatively-corrected Higgs mass of refs. [8{11] at O(m2

t
h
2
t
�
s
) in the limit of

m
A
� m

Z
. The corresponding result of the two-loop diagrammatic computation, under

the same set of approximations, is outlined in section 3. In order to compare the two
results, we must convert on-shell quantities to MS quantities. In section 4 we derive

the relations between the on-shell and the MS values of the parameters m
t
, X

t
and

M
S
in the limit of large M

S
. Details of the exact calculation are given in Appendix A,

while explicit relations between the on-shell and the MS parameters up to O(m4
t
=M

4
S
)

are given in Appendix B. In section 5 the diagrammatic on-shell result is expressed

in terms of MS parameters and compared to the result of the EFT computation of

section 2. The logarithmic contributions are shown to coincide, and the remaining
di�erence caused by non-logarithmic two-loop terms is analyzed. We argue that the

remaining di�erence can be minimized by improving the EFT computation by taking

into account the stop-mixing threshold contribution to the running top-quark mass. In
addition, we demonstrate that in a simple analytic approximation to the Higgs mass, one
can absorb the dominant two-loop contributions into an e�ective one-loop expression.

In section 6, we summarize our results and discuss suggestions for future improvements.
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2 E�ective Field Theory Approach

At the tree level, the mass matrix of the neutral CP-even Higgs bosons in the basis of

weak eigenstates of de�nite hypercharge �1 and +1 respectively can be expressed in

terms of m
Z
, m

A
and tan � � v2=v1 as follows:

M2;tree
H

=

 
m

2
A
sin2 � +m

2
Z
cos2 � �(m2

A
+m

2
Z
) sin � cos �

�(m2
A
+m

2
Z
) sin� cos � m

2
A
cos2 � +m

2
Z
sin2 �

!
: (1)

Diagonalizing this mass matrix yields the tree-level prediction for the lightest neutral
CP-even Higgs-boson mass

m
2;tree
h

= 1
2

�
m

2
A
+m

2
Z
�
q
(m2

A
+m

2
Z
)2 � 4m2

Z
m

2
A
cos2 2�

�
: (2)

For simplicity, we shall consider the limit of m
A
� m

Z
and large supersymmetry-

breaking masses characterized by a scale M
S
. Then, at energy scales below M

S
, the

e�ective low-energy theory consists of the Standard Model with one Higgs doublet.
The corresponding Higgs squared-mass at tree-level is given by m

2;tree
h

= m
2
Z
cos2 2�.

The dominant contributions to the radiatively-corrected Higgs mass within the EFT

approach is based on the evaluation of the e�ective quartic Higgs self-coupling, �, eval-
uated at the scale Q = m

t
. The value of �(M

S
) is �xed by the supersymmetric boundary

condition, although this value is slightly modi�ed by one-loop threshold e�ects (denoted
below by �th�), due to the decoupling of squarks at M

S
with non-zero mixing. One

then employs the Standard Model RGEs to obtain �(Q). Finally, the Higgs mass is

obtained via m2
h
= 2�(m

t
)v2(m

t
) [where v = 174 GeV is the Higgs vacuum expectation

value]. The mass m
t
denotes the running top-quark mass in the MS scheme at the scale

m
t
. It is related to the on-shell (or pole) top-quark mass M

t
� m

OS
t

by the following

relation

m
t
� m

MS
t;SM(mt

) =
M

t

1 + 4
3�
�
s
(M

t
)
; (3)

where we have only included the QCD corrections to leading order in �
s
. In eq. (3),

the subscript `SM' indicates that the running mass is de�ned in the usual way, i.e. in

terms of the pure Standard Model (gluonic) contributions in the (modi�ed) minimally

subtracted dimensional regularization (DREG) scheme [18].
The most important contributions to the mass of the lightest CP-even Higgs boson

arise from the t{et sector of the MSSM, which is characterized by the following squared-
mass matrix

M2
~t
=

 
M

2
~tL
+m

2
t
+ cos 2�(1

2
� 2

3
s
2
W
)m2

Z
m

t
X

t

m
t
X

t
M

2
~tR
+m

2
t
+ 2

3
cos 2�s2

W
m

2
Z

!
; (4)

where X
t
� A

t
�� cot �. The et-masses m~t1

, m~t2
and the mixing angle �~t are determined

at tree-level by diagonalizingM2
~t
. Neglecting the numerically small contributions pro-

portional to m2
Z
in the stop squared-mass matrix and setting

M~tL
= M~tR

�MSUSY; M
2
S
�M

2
SUSY +m

2
t

(5)
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leads to the simpli�ed mass matrix

M2
~
t
=

 
M

2
S

m
t
X

t

m
t
X

t
M

2
S

!
: (6)

In this approximation, the et-masses and the mixing angle are given by

m
2
~t1
= M

2
S
� jm

t
X

t
j;

m
2
~t2
= M

2
S
+ jm

t
X

t
j; (7)

�~t =

8<:
�

4
for X

t
< 0

��

4
for X

t
> 0 ;

(8)

where by de�nition, m~
t1
� m~

t2
.

The one-loop threshold corrections to the quartic Higgs self-coupling, induced by

the decoupling of stops, lead to a change of the e�ective quartic Higgs self-coupling at
the scale M

S
,

�(M
S
) = 1

4
(g2 + g

02) cos2 2� +�th�; (9)

where the �rst term is the tree-level value of the quartic Higgs self-coupling in the

e�ective low-energy Standard Model and the second term is the e�ect of the one-loop
threshold corrections at the scale M

S
[7,10],

�th� =
3

8�2
h
2
t

(h
h
2
t
� 1

8
(g2 + g

02)
i  X2

t

M
2
S

!
� 1

12
h
2
t

 
X

4
t

M
4
S

!)
+ � � � ; (10)

where all couplings in eq. (10) should be evaluated at the scale M
S
. The running

Higgs{top quark Yukawa coupling is related to the MS running top quark mass:

m
t
(�) = h

t
(�)v(�) ; (11)

where the running Higgs vacuum expectation value, v2(M
S
) = v

2(m
t
) ��2(m

t
), is gov-

erned by the Higgs �eld anomalous dimension

�(m
t
) = 1 +

3

32�2
h
2
t
(m

t
) ln

 
M

2
S

m
2
t

!
: (12)

In obtaining eq. (10), an expansion in the variable

�~t �
jm

t
X

t
j

M
2
S

=
m

2
~t2
�m

2
~t1

m
2
~t2
+m

2
~t1

; 0 � �~
t
< 1; (13)

has been performed. Terms not explicitly exhibited in eq. (10) denote the contributions
from higher powers in m

t
=M

S
and X2

t
=M

2
S
, which arise from the contributions of the t{et

sector. Contributions from other supersymmetric-breaking sectors have been omitted
for simplicity of the presentation. These contributions typically contribute no more

than a few GeV to the radiatively-corrected Higgs mass.
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As it was shown in refs. [10] and [11], one can obtain the two-loop leading-logarithmic
correction by expanding the parameter � up to order [ln(M2

S
=m

2
t
)]2,

�(m
t
) = �(M

S
)� �

�
(M

S
)t+ 1

2
�
0
�
(m

t
)t2 + � � �

= �(M
S
)� �

�
(m

t
)t� 1

2
�
0
�
(m

t
)t2 + � � � (14)

where �(M
S
) is given by eq. (9) and

t � ln
M

2
S

m
2
t

: (15)

Following ref. [10], we de�ne �
�
= a

�
� + b

�
. Therefore

�(m
t
) = �(M

S
) [1� a

�
(m

t
) t]� b

�
(m

t
) t [1� a

�
(m

t
) t]� 1

2
�
0
�
(m

t
)t2 : (16)

Here, 1�a
�
(m

t
) t = �

�4(m
t
), where � is the Higgs �eld anomalous dimension [eq. (12)].

Multiplying eq. (16) by 2v2(m
t
), we obtain an equation for the Higgs squared-mass in

the low-energy theory, which takes the following form:

m
2
h
(m

t
) = m

2
h
(M

S
) ��2(m

t
) + �radm

2
h
(m

t
) ; (17)

which de�nes the quantity �radm
2
h
(m

t
). In eq. (17),

m
2
h
(M

S
) = 2�(M

S
)v2(M

S
) ; (18)

where �(M
S
) is given in eq. (9) with all couplings and masses evaluated at the scaleM

S
.

In the present analysis, we are working in the approximation of h
b
= g = g

0 = 0.

That is, we focus only on the Higgs{top quark Yukawa and QCD coupling e�ects. The
relevant �-functions for �, g23 and h

2
t
at scales below the scale M

S
are given by [19]

16�2�
�
� 6(�2 + �� h

4
t
) +

h
4
t

8�2

�
15h2

t
� 16g23

�
; (19)

16�2�
h
2

t
� h

2
t

�
9
2
h
2
t
� 8g23

�
; (20)

16�2�
g
2

3

�
�
�11 + 2

3
N
f

�
g
4
3 ; (21)

where �
X
� dX=d lnQ2 and N

f
is the number of quark avors with masses less than Q

(e.g., N
f
= 6 for scales between m

t
and M

S
). Observe that we have included the domi-

nant strong gauge coupling two-loop contribution to the � function of the quartic Higgs
self-coupling, since it will contribute once we include all two-loop leading-logarithmic

corrections.
Using the above expressions, it is simple to �nd an approximate formula for the

lightest CP-even Higgs mass in the large m
A
limit. First, one obtains

�radm
2
h
(m

t
) =

3

4�2
m

4
t

v2(m
t
)
t

�
1 +

1

16�2

�
3
2
h
2
t
� 32��

s

�
t

�
; (22)

where all couplings in eq. (22) are evaluated at the scale Q2 = m
2
t
. To complete the

computation of m2
h
(m

t
) [eq. (17)], one must evaluate m2

h
(M

S
) [see eq. (18)] in terms of
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low-energy parameters. This is accomplished by using one-loop renormalization group
evolution to relate �(M

S
)v2(M

S
) to �(m

t
)v2(m

t
). In this way, one �nally arrives at the

expression2

m
2
h
= m

2;tree
h

+
3

4�2
m

4
t

v2

(
t+

X
2
t

M
2
S

 
1 � X

2
t

12M2
S

!

+
1

16�2

 
3

2

m
2
t

v2
� 32��

s

!"
2X2

t

M
2
S

 
1� X

2
t

12M2
S

!
t+ t

2

#
+

 
4�

s

3�
� 5h2

t

16�2

!
t

)
: (23)

The last two terms in eq. (23) reect the two-loop single logarithmic dependence induced
by the two-loop �-function contribution to the running of the quartic Higgs self-coupling.

It is interesting to note that these two terms are numerically close in size, and they tend

to cancel each other in the computation of the Higgs mass. Eq. (23) di�ers from the one
presented in ref. [9] only in the inclusion of these terms, which although sub-dominant

compared to the remaining terms, should be kept for comparison with the diagrammatic
result.

The full two-loop corrections to m2
h
at O(m2

t
h
4
t
) have not yet been calculated in the

diagrammatic approach; thus we neglect terms of this order in what follows.3 With a
slight rewriting of eq. (23) we �nally obtain the expression that will be compared with
the diagrammatic result in the following sections:

m
2
h
= m

2;tree
h

+
3

2

G
F

p
2

�2
m

4
t

(
� ln

 
m

2
t

M
2
S

!
+

X
2
t

M
2
S

 
1 � 1

12

X
2
t

M
2
S

!)

� 3
G
F

p
2

�2

�
s

�
m

4
t

(
ln2

 
m

2
t

M
2
S

!
+

"
2

3
� 2

X
2
t

M
2
S

 
1� 1

12

X
2
t

M
2
S

!#
ln

 
m

2
t

M
2
S

!)
; (24)

where we have introduced the notation M
S
;X

t
to emphasize that the corresponding

quantities are MS parameters, which are evaluated at the scale � = M
S
:

M
S
�M

MS
S

(M
S
); X

t
� X

MS
t

(M
S
); (25)

and m
t
� m

MS
t;SM(mt

) as de�ned in eq. (3).

3 Diagrammatic calculation

In the diagrammatic approach the masses of the CP-even Higgs bosons are obtained by

evaluating loop corrections to the h, H and hH-mixing propagators. The masses of the
two CP-even Higgs bosons, m

h
and m

H
, are determined as the poles of this propagator

matrix, which are given by the solution ofh
q
2 �m

2;tree
h

+ �̂
hh
(q2)

i h
q
2 �m

2;tree
H

+ �̂
HH

(q2)
i
�
h
�̂
hH

(q2)
i2
= 0; (26)

2In the \leading m4

t approximation" that is employed here, there is no distinction between mh(mt)
and the on-shell (or pole) Higgs mass, mh.

3As noted below eq. (23), terms ofO(m2

th
4

t ) can be as numerically important as terms ofO(m2

th
2

t�s).
Hence, in a complete phenomenological analysis, one should not neglect terms of the former type.
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where �̂
hh
(q2), �̂

HH
(q2), �̂

hH
(q2) denote the renormalized Higgs boson self-energies. In

ref. [13] the dominant two-loop contributions to the masses of the CP-even Higgs bosons
ofO(��

s
) have been evaluated. These corrections, obtained in the on-shell scheme, have

been combined in refs. [14] and [15] with the complete one-loop on-shell result of ref. [4]

and the two-loop corrections of O(m2
t
h
4
t
) given in refs. [9{11].

The diagrammatic two-loop calculation of ref. [13] involves a renormalization in the

Higgs sector up to the two-loop level and a renormalization in the stop sector up to

O(�
s
). In the on-shell scheme, the renormalization in the stop sector is performed such

that the et-masses m~t1
, m~t2

correspond to the poles of the propagators, i.e.

Re �̂~t1~t1
(m2

~t1
) = 0; Re �̂~t2~t2

(m2
~t2
) = 0 (27)

for the renormalized self-energies. In Ref. [13] the renormalization condition

Re �̂~t1~t2
(m2

~t1
) = 0 (28)

has been chosen to de�ne the stop mixing angle.4 In ref. [16] a compact analytic
approximation has been derived from the rather complicated diagrammatic two-loop
result by performing an expansion in �~t [eq. (13)] of the t{et sector contributions.

The diagrammatic two-loop corrections to the Higgs mass also depend non-trivially

on the gluino mass, which is a free input parameter of the supersymmetricmodel. In the
EFT approach described in section 2, the gluino is decoupled at the same scale as the
stops. Thus, in order to compare the results of the EFT and diagrammatic approaches,
one must take m~g ' O(MS

). In this paper, we have chosen

m~g =MSUSY =
q
M

2
S
�m

2
t
: (29)

For the one-loop contributions from the other sectors of the MSSM the leading loga-
rithmic approximation has been used [7, 11]. In this approximation, the momentum
dependence in eq. (26) is neglected everywhere. The resulting expression can thus be
written as a correction to the tree-level mass matrix [eq. (1)]. The expression for m2

h
in

this approximation is obtained by diagonalizing the loop-corrected mass matrix. The

compact analytic expression derived in this way, which is valid for arbitrary values of

m
A
, has been shown to approximate the full diagrammatic result for m

h
rather well,

typically within about 2 GeV for most parts of the MSSM parameter space [16].

In the following we will restrict ourselves to the contribution of the t{et sector. In or-
der to perform a simple comparison with the EFT approach of section 2, we only consider
the dominant one-loop and two-loop terms of O(m2

t
h
2
t
) and O(m2

t
h
2
t
�
s
), respectively.

We focus on the case m
A
� m

Z
, for which the result for m2

h
can be expressed in a

particularly compact form,

m
2
h
= m

2;tree
h

+m
2;�
h

+m
2;��s
h

; (30)

4In this paper, our analysis is presented in a simpli�ed model of stop mixing, where the tree-level
stop squared-mass matrix given by eq. (6). In this case, et1 and et2 are states of de�nite parity at
tree-level. Since parity is preserved to all orders in �s, it follows that �̂~t1~t2

(p2) = 0 (when electroweak
corrections are neglected) and eq. (28) is trivially satis�ed.
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and neglect the non-leading terms of O(m2
Z
=m

2
A
). Moreover, assuming that M

S
� M

t

and neglecting the non-leading terms of O(M
t
=M

S
) and O(m2

Z
=M

2
t
), one obtains the

following simple result for the one-loop and two-loop contributions

m
2;�
h

=
3

2

G
F

p
2

�2
M

4
t

(
� ln

 
M

2
t

M
2
S

!
+

X
2
t

M
2
S

 
1� 1

12

X
2
t

M
2
S

!)
; (31)

m
2;��s
h

= �3GF

p
2

�2

�
s

�
M

4
t

(
ln2

 
M

2
t

M
2
S

!
�
 
2 +

X
2
t

M
2
S

!
ln

 
M

2
t

M
2
S

!
� X

t

M
S

 
2� 1

4

X
3
t

M
3
S

!)
:

(32)

The corresponding formulae, in which terms up to O(M4
t
=M

4
S
) are kept, can be found

in Appendix B [see eqs. (B.1) and (B.2)].

In eqs. (31) and (32) the parameters M
t
, M

S
, X

t
are on-shell quantities. Using

eq. (3), the on-shell result for m2
h
[eqs. (30){(32)] can easily be rewritten in terms of the

running top-quark mass m
t
. While this reparameterization does not change the form

of the one-loop result, it induces an extra contribution at O(��
s
). Keeping again only

terms that are not suppressed by powers of m
t
=M

S
, the resulting expressions read

m
2;�
h

=
3

2

G
F

p
2

�2
m

4
t

(
� ln

 
m

2
t

M
2
S

!
+

X
2
t

M
2
S

 
1 � 1

12

X
2
t

M
2
S

!)
; (33)

m
2;��s
h

= �3GF

p
2

�2

�
s

�
m

4
t

(
ln2

 
m

2
t

M
2
S

!
+

 
2

3
� X

2
t

M
2
S

!
ln

 
m

2
t

M
2
S

!

+
4

3
� 2

X
t

M
S

� 8

3

X
2
t

M
2
S

+
17

36

X
4
t

M
4
S

)
; (34)

in accordance with the formulae given in ref. [16].

We now compare the diagrammatic result expressed in terms of the parameters m
t
,

M
S
, X

t
[eqs. (33) and (34)] with the EFT result [eq. (24)] which is given in terms of the

MS parameters m
t
, M

S
, X

t
[eq. (25)]. While the X

t
{independent logarithmic terms

are the same in both the diagrammatic and EFT results, the corresponding logarithmic
terms at two-loops that are proportional to powers of X

t
and X

t
, respectively, are

di�erent. Furthermore, eq. (34) does not contain a logarithmic term proportional to

X
4
t
, while the corresponding term proportional to X

4
t
appears in eq. (24). To check

whether these results are consistent, one must relate the on-shell and MS de�nitions of
the parameters M

S
and X

t
.

Finally, we note that the non-logarithmic terms contained in eq. (34) correspond to

genuine two-loop contributions that are not present in the EFT result of eq. (24). They

can be interpreted as a two-loop �nite threshold correction to the quartic Higgs self-
coupling in the EFT approach. In particular, note that eq. (34) contains a term that is

linear in X
t
This is the main source of the asymmetry in the two-loop corrected Higgs

mass under X
t
! �X

t
obtained by the diagrammatic method. The non-logarithmic

terms in eq. (34) give rise to a numerically signi�cant increase of the maximal value of

m
h
of about 5 GeV in this approximation.
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4 On-shell and MS de�nitions of MS and Xt

Since the parameters p = fm2
~t1
;m

2
~t2
; �~

t
;m

t
g of the t{et sector are renormalized di�erently

in di�erent schemes, the parameters M
S
and X

t
also have a di�erent meaning in these

schemes. In order to derive the relation between these parameters in the MS and in

the on-shell scheme we start from the observation that at lowest order the parameters p
are the same in both schemes, i.e. p = p

OS = p
MS in lowest order. Expressing the bare

parameters in terms of the renormalized parameters and the counterterms leads to

p
MS + �p

MS = p
OS + �p

OS
: (35)

Here �p
OS is the on-shell counterterm in D � 4 � 2� dimensions, and according to

the MS prescription �p
MS is given just by the pole part of �pOS, i.e. the contribution

proportional to 1=�� E + ln 4�, where E is Euler's constant. The MS parameters are

thus related to the on-shell parameters by

p
MS = p

OS +�p; (36)

where �p � �p
OS � �p

MS is �nite in the limit D ! 4 and contains the MS scale �

which can be chosen appropriately. In this paper, we only need to know �p to O(�
s
)

one-loop accuracy. In the following we will compare the result for m
h
expressed in terms

of the on-shell parameters pOS with results for m
h
in terms of the corresponding MS

parameters pMS, which are related to pOS as in eq. (36).

In the EFT approach, the parameters M
S
and X

t
are running parameters evaluated

at the scale � = M
S
[eq. (25)]. In the simpli�ed model for the stop squared-mass matrix

given by eq. (6), the relations between the parameters X
t
and M

S
in the on-shell and

MS scheme are obtained using

m
2;OS
~t1

=M
2;OS
S

�M
t
X

OS
t

; m
2;OS
~t2

=M
2;OS
S

�M
t
X

OS
t

; (37)

m
2;MS
~t1

= M
2
S
�m

t
(M

S
)X

t
; m

2;MS
~t2

=M
2
S
�m

t
(M

S
)X

t
; (38)

where we have written m
t
(M

S
) � m

MS
t
(M

S
) and M

t
� m

OS
t

as in section 2. In both

eqs. (37) and (38), the upper and lower signs refer toXOS
t

> 0 andXOS
t

< 0, respectively.

In the model of stop mixing under consideration, there is no shift in the scalar top mixing
angle to all orders in �

s
, from which it follows that j�OS~t j = j�MS

~t
j.

Inserting the relation between m
2
~t1
;m

2
~t2

in the on-shell and the MS scheme into

eqs. (37) and (38) yields up to �rst order in �
s

M
2
S
=M

2;OS
S

+ 1
2

�
�m2

~t1
+�m2

~t2

�
; (39)

X
t
= X

OS
t

M
t

m
t
(M

S
)
� 1

2m
t

�
�m2

~t2
��m2

~t1

�
; (40)

where again the upper and lower sign in the last equation refers to X
OS
t

> 0 and
X

OS
t

< 0, respectively. In the second term of eq. (40) it is not necessary to distinguish

(at one-loop) between m
t
(M

S
) and M

t
, since �m2

~t1
, �m2

~t2
are O(�

s
) quantities; hence,

the generic symbol m
t
is used here.
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In Appendix A, we have obtained explicit results for �m2
~t1
, �m2

~t2
and M

t
=m

t
(M

S
).

Inserting the appropriate expressions for these quantities into eq. (40), one observes that

the functional form for X
t
is the same for XOS

t
> 0 and XOS

t
< 0 [i.e., the sign di�erence

in eq. (40) is compensated by the term (�m2
~t2
� �m2

~t1
)]. As a result, it is no longer

necessary to distinguish between these two cases. The case XOS
t

= 0 (which formally

would have to be treated separately) is understood as being included in eq. (40).

Using the expansions given in Appendix A and setting the gluino mass according to

eq. (29), we obtain to leading order in m
t
=M

S

M
2
S
= M

2;OS
S

� 8

3

�
s

�
M

2
S
; (41)

X
t
= X

OS
t

M
t

m
t
(M

S
)
+

8

3

�
s

�
M

S
: (42)

As previously noted, it is not necessary to specify the de�nition of the parameters that
appear in the O(�

s
) terms. Thus, we use the generic symbol M2

S
in the O(�

s
) terms

of eqs. (41){(42). The corresponding results including terms up to O (m4
t
=M

4
S
) can be

found in Appendix B.
Finally, we need to evaluate the ratio M

t
=m

t
(M

S
). The relevant expression is given

in eq. (A.14). Using the expansions given at the end of Appendix A, we �nd to leading
order in m

t
=M

S

m
t
(M

S
) = m

t

"
1 +

�
s

�
ln

 
m

2
t

M
2
S

!
+

�
s

3�

X
t

M
S

#
; (43)

where m
t
� m

MS
t;SM(mt

) is given in terms of M
t
by eq. (3). The corresponding formula,

where terms up to O (m4
t
=M

4
S
) are kept, can be found at the end of Appendix B. Note

that the term in eq. (43) that is proportional to X
t
is a threshold correction due to the

supersymmetry-breaking stop-mixing e�ect. Inserting the result of eq. (43) into eq. (42)
yields:

X
t
= X

OS
t

+
�
s

3�
M

S

"
8 +

4X
t

M
S

� X
2
t

M
2
S

� 3X
t

M
S

ln

 
m

2
t

M
2
S

!#
: (44)

It is interesting to note that X
t
6= 0 when X

OS
t

= 0. Moreover, it is clear from eq. (44)

that the relation between X
t
de�ned in the on-shell and the MS schemes includes a

leading logarithmic e�ect, which has to be taken into account in a comparison of the
leading logarithmic contributions in the EFT and the two-loop diagrammatic results.

The above results are relevant for calculations in the full theory in which the e�ects

of the supersymmetric particles are fully taken into account. However, in e�ective �eld

theory below M
S
, one must decouple the supersymmetric particles from the loops and

compute with the Standard Model spectrum. Thus, it will be useful to de�ne a running

MS top-quark mass in the e�ective Standard Model, mMS
t;SM(�), which to O(�

s
) is given

by:

m
MS
t;SM(�) = m

t

"
1 +

�
s

�
ln

 
m

2
t

�2

!#
: (45)

At the scaleM
S
, we must match this result onto the expression for m

t
(M

S
) as computed

in the full theory [eq. (43)]. The matching is discontinuous at � = M
S
due to the

threshold corrections arising from stop mixing e�ects.
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In comparing with the EFT results of refs. [8{11], it should be noted that the
threshold correction in eq. (43) were omitted. This is relevant, since m

t
(M

S
) [or the

related quantity h
t
(M

S
), see eq. (11)] appears in the threshold correction to the quartic

Higgs self-coupling �(M
S
) [eqs. (9) and (10)]. In refs. [8{11], m

t
(M

S
) is re-expressed in

terms of m
t
(m

t
) by using eq. (45) rather than eq. (43). As a result, a two-loop non-

logarithmic term proportional to X
t
is missed in the computation of m

h
. Such a term is

of the same order as the two-loop threshold correction to the quartic Higgs self-coupling,

which were also neglected in refs. [8{11]. However, in this work we do not neglect the

latter. Hence, it would be incorrect to use eq. (45) in the evaluation of m
t
(M

S
). In

section 5 we will apply m
t
(�) with di�erent choices of � for the X

t
{independent and

X
t
{dependent contributions to m

2
h
, which will prove useful for absorbing numerically

large two-loop contributions into an e�ective one-loop result. In the spirit of EFT, we

will argue that for � = M
S
, one should use the results of eq. (43) while for � < M

S
, one

should use eq. (45).

A remark on the regularization scheme is in order here. In e�ective �eld theory,
the running top-quark mass at scales below M

S
is the SM running coupling [eq. (45)],

which is calculated in dimensional regularization. This is matched onto the running

top-quark mass as computed in the full supersymmetric theory. One could argue that

the appropriate regularization scheme for the latter should be dimensional reduction
(DRED) [20], which is usually applied in loop calculations in supersymmetry.5 The

result of such a change would be to modify slightly the two-loop non-logarithmic contri-
bution to m

h
that is proportional to powers of X

t
. Of course, the physical Higgs mass is

independent of scheme. One is free to re-express eqs. (31) and (32) [which depend on the

on-shell parameters M
t
, M

S
, X

t
] in terms of parameters de�ned in any other scheme.

In this paper, we �nd MS{renormalization via DREG to be the most convenient scheme
for the comparison of the diagrammatic and EFT results for m

h
.

5 Comparing the EFT and diagrammatic results

In order to directly compare the two-loop diagrammatic and EFT results, we must

convert from on-shell to MS parameters. Inserting eqs. (41) and (44) into eqs. (33) and

(34), one �nds

m
2;�
h

=
3

2

G
F

p
2

�2
m

4
t

(
� ln

 
m

2
t

M
2
S

!
+

X
2
t

M
2
S

 
1� 1

12

X
2
t

M
2
S

!)
; (46)

m
2;��s
h

= �3GF

p
2

�2

�
s

�
m

4
t

(
ln2

 
m

2
t

M
2
S

!
+

"
2

3
� 2

X
2
t

M
2
S

 
1� 1

12

X
2
t

M
2
S

!#
ln

 
m

2
t

M
2
S

!

+
X

t

M
S

 
2

3
� 7

9

X
2
t

M
2
S

+
1

36

X
3
t

M
3
S

+
1

18

X
4
t

M
4
S

!)
+O

 
m

t

M
S

!
: (47)

Comparing eq. (47) with eq. (24) shows that the logarithmic contributions of the
diagrammatic result expressed in terms of the MS parameters m

t
, M

S
, X

t
agree with

5In order to obtain the corresponding DRED result, one simply has to replace the term 4�s=3� in
the denominator of eq. (3) by 5�s=3�.
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the logarithmic contributions obtained by the EFT approach. The di�erences in the log-
arithmic terms observed in the comparison of eqs. (33) and (34) with eq. (24) have thus

been traced to the di�erent renormalization schemes applied in the respective calcula-

tions. The fact that the logarithmic contributions obtained within the two approaches

agree after a proper rewriting of the parameters of the stop sector is an important con-

sistency check of the calculations. In addition to the logarithmic contributions, eq. (47)

also contains non-logarithmic contributions, which are numerically sizable.

In �g. 1, we compare the diagrammatic result form
h
in the leadingm4

t
approximation

to the results obtained in section 2 by EFT techniques, for two di�erent values of tan �.

However, as noted at the end of section 4, in the derivation of the EFT result of eq. (24)

the supersymmetric threshold corrections to m
t
(M

S
) were neglected. Thus, X

t
, which

appears in eqs. (46) and (47), is not precisely the same as the X
t
parameter appearing

in the EFT result of eq. (24) due to the di�erence in the de�nition of m
t
(M

S
) [eq. (43)]

and m
MS
t;SM [eq. (45)]. Taking this di�erence into account in eq. (42), it follows that the

X
t
parameter that appears in eq. (24) is given by X

0
t
� X

t
[1 + (�

s
=3�)(X

t
=M

S
)]. It

can be easily checked that the change from X
t
to X

0
t
does not a�ect the comparison

of two-loop logarithmic terms between eqs. (24) and (47). Moreover, the di�erence
between X

t
and X

0
t
is numerically small. In �g. 1, the diagrammatic result for m

h
is

plotted versus X
t
, while the EFT result is plotted versus X 0

t
.

While the diagrammatic result expressed in terms of m
t
, M

S
, X

t
agrees well with

the EFT result in the region of no mixing in the stop sector, sizable deviations occur for
large mixing. In particular, the non-logarithmic contributions give rise to an asymmetry

under the change of sign of the parameter X
t
, while the EFT result is symmetric under

X
t
! �X

t
. In the approximation considered here, the maximal value for m

h
in the

diagrammatic result lies about 3 GeV higher than the maximal value of the EFT result

for tan� = 1:6. The di�erences are slightly smaller for tan� = 30. In addition, as
previously noted, the maximal-mixing point (X

t
)max [where the radiatively corrected

value of m
h
is maximal] is equal to its one-loop value, (X

t
)max ' �

p
6M

S
, in the EFT

result of eq. (24), while it is shifted in the two-loop diagrammatic result. However, �g. 1
illustrates that the shift in (X

t
)max from its one-loop value, while signi�cant in the two-

loop on-shell diagrammatic result, is largely diminished when the latter is re-expressed

in terms of MS parameters.

The di�erences between the diagrammatic and EFT results shown in �g. 1 can
be attributed to non-negligible non-logarithmic terms proportional to powers of X

t
.

Clearly, the EFT technique can be improved to incorporate these terms. As previously
discussed, one can account for such terms in the EFT approach by: (i) including one-

loop �nite threshold e�ects in the de�nition ofm
t
(M

S
), and (ii) including two-loop �nite

threshold e�ects to �th� [eq. (10)] in the matching condition for �(M
S
).6 Although both

e�ects are nominally of the same order, it is interesting to investigate what fraction of

the terms proportional to powers of X
t
in eq. (47) can be obtained by including the

threshold e�ects in the de�nition of m
t
(M

S
).

6An additional two-loop O(h2t�s) correction to �(MS ) can arise because the Higgs self-coupling in
the MS scheme does not precisely satisfy the supersymmetric relation [�(MS) =

1

4
(g2 + g

02) cos2 2�] in

the supersymmetric limit. This correction corresponds to a matching of the MS and DR couplings at
the scale MS [21]. We will count this as part of the two-loop �nite threshold e�ects.
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Figure 1. Comparison of the diagrammatic two-loop O(m2

th
2

t�s) result for mh, to leading order in

mt=MS [eqs. (46) and (47)] with the EFT result of eq. (24). Note that the latter omits the one-loop

threshold corrections due to stop mixing in the evaluation of mt(MS ). Since this quantity enters in the

de�nition of X t [see eq. (42)], the meaning of XMS

t plotted along the x-axis is slightly di�erent for the

diagrammatic curve, where XMS

t = Xt, and the EFT curve, where XMS

t = X t [1 + (�s=3�)(Xt=MS)].

See text for further details. The two graphs above are plotted for MS = mA = (m2

~g +m
2

t )
1=2 = 1 TeV

for the cases of tan � = 1:6 and tan� = 30, respectively.
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In ref. [11], it was shown that the leading two-loop contributions to m2
h
given by the

EFT result of eq. (24) could be absorbed into an e�ective one-loop expression. This was

accomplished by considering separately the X
t
{independent leading double logarithmic

term (the \no-mixing" contribution) and the leading single logarithmic term that is

proportional to powers of X
t
(the \mixing" contribution) at O(m2

t
h
2
t
�
s
). Both terms

can be reproduced by an e�ective one-loop expression, where m
t
in eq. (46), which

appears in the no-mixing and mixing contributions, is replaced by the running top-

quark mass evaluated at the scales �
t
and �~t, respectively:

no mixing: �
t
� (m

t
M

S
)1=2 ; mixing: �~t �M

S
: (48)

That is, at O(m2
t
h
2
t
�
s
), the leading double logarithmic term is precisely reproduced

by the single-logarithmic term at O(m2
t
h
2
t
), by replacing m

t
with m

t
(�

t
), while the

leading single logarithmic term at two-loops proportional to powers of X
t
is precisely

reproduced by the corresponding non-logarithmic terms proportional to X
t
at O(m2

t
h
2
t
),

by replacing m
t
with m

t
(M

S
).

Applying the same procedure to eq. (47) and rewriting it in terms of the running
top-quark mass at the corresponding scales as speci�ed in eq. (48), we obtain

m
2;�
h

=
3

2

G
F

p
2

�2

(
�m4

t
(�

t
) ln

 
m

2
t
(�

t
)

M
2
S

!
+m

4
t
(M

S
)
X

2
t

M
2
S

 
1 � X

2
t

12M 2
S

!)
; (49)

m
2;��s
h

= �3GF

p
2

�2

�
s

�
m

4
t

(
1

6
ln

 
m

2
t

M
2
S

!
+

X
t

M
S

 
2

3
� 1

9

X
2
t

M
2
S

+
1

36

X
3
t

M
3
S

!)
: (50)

Indeed, the X
t
{independent leading double logarithmic term and the leading single log-

arithmic term that is proportional to powers of X
t
have disappeared from the two-loop

expression [eq. (50)], having been absorbed into an e�ective one-loop result [eq. (49)]
(denoted henceforth as the \mixed-scale" one-loop EFT result). Of the terms that re-

main [eq. (50)], there is a subleading one-loop logarithm at two-loops which is a remnant
of the no-mixing contribution. But, note that the magnitude of the coe�cient (1=6)
has been reduced from the corresponding coe�cients that appear in eqs. (32) and (47)

[�2 and 2=3, respectively]. In addition, the remaining leftover two-loop non-logarithmic
terms are also numerically insigni�cant. We conclude that the \mixed-scale" one-loop

EFT result provides a very good approximation to m
2
h
, in which the most signi�cant

two-loop terms have been absorbed into an e�ective one-loop expression.
To illustrate this result, we compare in �g. 2 the diagrammatic two-loop result

expressed in terms of MS parameters [eqs. (46) and (47)] with the \mixed-scale" one-

loop EFT result [eq. (49)] as a function of X
t
. In order to make a fair comparison of

two-loop expressions, we �rst evaluate eq. (49) as a perturbation expansion which is
truncated beyond the O(�2

s
) term.7 It is this result that is plotted as a dashed line in

�g. 2. Note that by construction, the sum of the two-loop truncated version of eq. (49)

and the leftover two-loop term given by eq. (50) is equal to the sum of eqs. (46) and

(47). That is, the di�erence between the solid and dashed lines of �g. 2 is precisely

7For example, using eq. (45), we would write m4

t (�t) = m
4

t

�
1 + 4(�s=�) ln(m

2

t=�
2

t )
�
and insert this

into eq. (49).
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Figure 2. Comparison of the diagrammatic two-loop O(m2

th
2

t�s) result for mh, to leading order

in mt=MS [eqs. (46) and (47)] with the \mixed-scale" one-loop EFT result [eq. (49)]. Note that

the latter now includes the threshold corrections due to stop mixing in the evaluation of mt(MS) in

contrast to the EFT results depicted in �g. 1. \Mixed-scale" indicates that in the no-mixing and

mixing contributions to the one-loop Higgs mass, the running top quark mass is evaluated at di�erent

scales according to eq. (48). See text for further details. The two graphs above are plotted for

MS = mA = (m2

~g +m
2

t )
1=2 = 1 TeV for the cases of tan � = 1:6 and tan � = 30, respectively.
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equal to the leftover two-loop term given by eq. (50), which is seen to be numerically
small. Hence, within the simplifying framework under consideration (i.e., only leading

t{et sector-contributions are taken into account assuming a simpli�ed stop squared-mass

matrix [eq. (6)], with M
S
, m

A
� m

t
and m~g = MSUSY), we see that the \mixed-scale"

one-loop result for m
h
provides a very good approximation to a more complete two-loop

result for all values of X
t
.8 In the EFT picture this means that, once re-expressed in

terms of the appropriate MS running parameters, the dominant contributions to the

lightest CP-even Higgs mass arising from the two-loop threshold corrections induced by

the decoupling of the stops, have their origin in the one-loop threshold corrections to

the Higgs{top quark Yukawa coupling.

In the present analysis we have focused on the leading contributions of the t{et sec-
tor of the MSSM. However, these contributions alone are not su�cient to provide an

accurate determination of the Higgs mass (and can be o� by 5 GeV or more in certain
regions of the MSSM parameter space). In any realistic phenomenological analysis of

the properties of the Higgs sector, one must include sub-leading contributions of the
t{et sector as well as contributions from other particle/superpartner sectors. Such con-
tributions have been obtained within the EFT approach in refs. [10] and [11], which

incorporates one-loop leading logarithmic terms from all partner/superpartner sectors,

plus single and double logarithmic two-loop contributions from the t{et and b{eb sectors.
The full one-loop diagrammatic result is known [3{5], and this along with the diagram-

matic two-loop result from the t{et sector at O(��
s
) are included in the Fortran code

FeynHiggs [22]. The impact of the additional contributions to the radiatively-corrected
Higgs mass on phenomenological studies have been investigated in refs. [15,23].

In the large tan � regime, the b{eb sector is especially important. Here the corrections
induced by the bottom Yukawa coupling become relevant, and one should correspond-
ingly include the bottom mass corrections originating from the decoupling of the super-
symmetric particles. These corrections are enhanced by a large tan� factor and hence
can have a sizable impact on the phenomenology of the Higgs sector. Some of the most

relevant consequences of these corrections have been recently discussed in refs. [24{26].

6 Discussion and Conclusions

In this work, we have compared the results for the lightest CP-even Higgs-boson mass

obtained from the two-loop O(��
s
) diagrammatic calculation in the on-shell scheme

with the results of an e�ective �eld theory approach. In the latter, the two-loop O(��
s
)

terms are generated via renormalization group running of the e�ective low-energy pa-

rameters from the supersymmetry-breaking scale, M
S
to the scale m

t
. We have focused

on the leading O(m2
t
h
2
t
�
s
) two-loop contributions to m

2
h
in the limit of large m

A
and

M
S
. In this case, the e�ective �eld theory below M

S
is the one-Higgs-doublet Standard

Model, which greatly simpli�es the calculation. In addition, the gluino mass was set to

m~g = MSUSY � (M2
S
�m

2
t
)1=2. The resulting transparent analytic expressions for the

8Strictly speaking, the analytic approximations of this paper break down when mtX t �M
2

S . Thus,
one does not expect an accurate result for the corresponding formulae when X t is too large [9,11,16].
In practice, one should not trust the accuracy of the analytic formulae once Xt > (X t)max.
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radiatively-corrected Higgs mass were well suited for investigating the basic relations
between the various approaches. In order to compare the on-shell diagrammatic and

e�ective �eld theory approaches, one must note two important facts. First, the two

calculations are performed in di�erent renormalization schemes. Hence, the resulting

expressions actually depend on soft-supersymmetry-breaking parameters whose de�ni-

tions di�er at the one-loop level. Second, the diagrammatic calculation includes genuine

non-logarithmic two-loop corrections to the lightest CP-even Higgs-boson mass. In the

e�ective �eld theory approach, these would correspond to two-loop threshold corrections

resulting from the decoupling of the two heavy top squarks in the low energy e�ective

theory.

Previous comparisons of the corresponding two-loop results revealed an apparent dis-

crepancy between terms that depend logarithmically on M
S
, and di�erent dependences

of the non-logarithmic terms on X
t
. However, after re-expressing the one-loop and the

two-loop terms of the on-shell diagrammatic result in terms of MS parameters, i.e., ap-

plying the same renormalization scheme for both approaches, we have shown that the
discrepancy in the logarithmic dependence on M

S
of both expressions disappears. This

constitutes an important consistency check of the calculations. There remain, however,

genuine non-logarithmic two-loop contributions in the diagrammatic result. They give

rise to an asymmetry under X
t
! �X

t
, while the e�ective �eld theory computations

that neglected the two-loop threshold corrections due to stop mixing only yield results

that are symmetric under the change of sign of X
t
. Moreover, the non-logarithmic

two-loop contributions of the on-shell diagrammatic computation, in the approxima-
tions considered in this paper, can increase the predicted value of m

h
by as much as

3 GeV.9 Finally, they induce a shift of the value of X
t
where m

h
is maximal relative

to the corresponding one-loop value (X
t
)max ' �p6M

S
. It is interesting to note that

this shift is more (less) pronounced when m
h
is expressed in terms of X

t
in the on-shell

(MS) scheme. The e�ect of the leading non-logarithmic two-loop contributions can be
taken into account in the e�ective �eld theory method by incorporating the O(h2

t
�
s
)

X
t
{dependent corrections into the boundary conditions of the e�ective quartic Higgs

self-coupling at the scale M
S
and performing a proper one-loop O(�

s
) matching of the

running Higgs{top Yukawa coupling at M
S
.

In ref. [11], it was shown that the leading two-loop contributions to m
2
h
could be

absorbed into an e�ective one-loop expression by the following procedure. The run-

ning top-quark mass that appears in the X
t
{independent one-loop expression for m2

h
is

evaluated at the scale �
t
= (M

S
m

t
)1=2. In the corresponding X

t
{dependent terms, the

running top quark mass is evaluated at the scale �~t = M
S
. The result, which we call the

mixed-scale one-loop EFT expression neatly incorporates the leading two-loop e�ects.
In this paper, we have extended this result by explicitly including stop mixing e�ects in
evaluating the running parameters m

t
(M

S
) and h

t
(M

S
). By doing so, we are able to in-

corporate some portion of the genuine leading non-logarithmic two-loop contributions.
The remaining terms at this order would then be identi�ed with two-loop threshold

corrections to the e�ective Higgs quartic coupling at the scale M
S
. Remarkably, the

latter turn out to be numerically small. This means that the mixed-scale one-loop EFT

9If only the on-shell top-quark mass is re-expressed in terms of the corresponding MS parameter,
the resulting increase in mh can be as much as 5 GeV.
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expression for m
h
provides a rather accurate estimate of the radiatively-corrected mass

of the lightest CP-even Higgs boson of the MSSM.

The above results have been obtained in a rather simple setting. A special choice

for the stop squared-mass matrix was made [eq. (6)] to simplify our analysis. The

gluino mass was �xed to a value of order M
S
. The leading O(m2

t
h
4
t
) corrections were

neglected. Subleading terms of O(m2
Z
h
2
t
�
s
) and O(m2

Z
h
4
t
) terms were also neglected.

For example, consider the e�ect of varying the gluino mass. The two-loop diagrammatic

results of refs. [13{16] showed that the value of m
h
changed by as much as �2 GeV as

a function of m~g, for mt
<� m~g <� M

S
. The gluino mass dependence can be treated

in the EFT approach as follows. Let us assume that M
S
characterizes the scale of the

squark masses, and m~g < M
S
. Then, at scales below M

S
one integrates out the squarks

but keeps the gluino as part of the low-energy e�ective theory. However, since the

gluino always appears with squarks in diagrams contributing to m2
h
at two-loops, once

the squarks are integrated out, they no longer a�ect the running of any of the relevant

low-energy parameters below M
S
. However, the gluino mass does a�ect the value of

h
t
(M

S
) and m

t
(M

S
) [the relevant formulae are given in Appendix A]. Thus, in the EFT

approach, gluino mass dependence enters via the threshold corrections to the Higgs{top

quark Yukawa couplings.

The case of a more general stop squared-mass matrix can be treated using the
same methods outlined in Appendix A.10 Here the computations are more complicated

since there is now one-loop mixing between et1 and et2. In the EFT approach, one must
decouple separately the two stops, and include the most general stop-mixing e�ects in
the determination of the relation between the on-shell and MS parameters. The leading

O(m2
t
h
4
t
) corrections in the EFT approach can be incorporated as in section 2 [10,11] by

extending the computations of Appendix A to include the one-loop O(h2
t
) corrections

to the running top-quark mass and stop sector parameters. However, at present, one
cannot check these results against an O(m2

t
h
4
t
) two-loop diagrammatic computation,

since the latter does not yet appear in the literature in full generality.

Going beyond the approximations made in this paper, the next step is to incorporate
the above improvements, as well as the next subleading contributions of O(m2

Z
h
2
t
�
s
) and

O(m2
Z
h
4
t
) into the computation of m2

h
. One might then hope to show that a complete

mixed-scale one-loop EFT result, suitably generalized, provides a very good approxi-
mation to the radiatively-corrected CP-even Higgs mass of the MSSM. Such an analysis

could be used to organize the most signi�cant non-leading one-loop and two-loop con-
tributions to m

2
h
and provide some insight regarding the magnitude of the unknown

higher-order corrections, thus reducing the theoretical uncertainty in the prediction for
m

h
. This would have a signi�cant impact on the physics of the lightest CP-even Higgs

boson at LEP2, the upgraded Tevatron and the LHC.

10The transformation from on-shell to MS input parameters for the case of the most general stop
squared-mass matrix will be included in the new version of the program FeynHiggs.
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Note Added

After this work was completed, we received a paper [27] which discusses many of the

same issues that we address in this work. In ref. [27], the two-loop e�ective potential

of the MSSM is employed, including renormalization group resummation of logarith-

mic terms, and the leading non-logarithmic two-loop terms of O(��
s
). The relation

between on-shell and MS parameters are also taken into account. The end results are

qualitatively similar to the ones obtained here.
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Appendix A: Relations between on-shell and MS def-

initions of mt, MS and Xt

In this appendix, we derive the relations between the on-shell and MS de�nitions of

m
t
, M

S
and X

t
. We have checked that these results agree with similar results given

in ref. [5]. These results are derived in a model where the stop mass-squared matrix is

given by eq. (6). The corresponding stop squared-masses and mixing angle are given by
eqs. (7) and (8). Note that in this model, the top-squark mass eigenstates, et1 and et2, are
states of de�nite parity in their interactions with gluons and gluinos. The corresponding

Feynman rules are shown in �g. 3.

Consider �rst the one-loop contribution to the top-quark two-point function atO(�
s
)

due to: (i) the top-quark/gluon loop [�g. 4(a)] and (ii) the stop/gluino loop [�g. 4(b)].

Divergences are regulated by dimensional regularization in D � 4� 2� dimensions and
removed by minimal subtraction. Including the tree-level contribution (which is equal

to the negative of the inverse tree-level propagator), the end result is11

�(2)(p) = i[6p�m
t
(�)]� iC

F
�
s

4�

n
6p[1 + 2B1(p2;m2

t
; 0)]� 2m

t
[1� 2B0(p2;m2

t
; 0)]

+ 6p[B1(p2;m2
~g;M

2
S
�m

t
X

t
) + B1(p2;m2

~g;M
2
S
+m

t
X

t
)]

�m~g[B1(p2;m2
~g;M

2
S
�m

t
X

t
)� B1(p2;m2

~g;M
2
S
+m

t
X

t
)]
o
; (A.1)

where T a

T
a = C

F
1 is the SU(3) quadratic Casimir operator in the fundamental repre-

11All results in this section are given in the MS subtraction scheme. In the DR scheme, all the
formulae of this appendix still apply except in the case of the top-quark gluon loop. To obtain the
corresponding DR result, simply remove the additive factors of 1 in the two occurences in eq. (A.1).
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Figure 3. Feynman rules for top-squark interactions in a model where the stop mass-squared matrix

is given by eq. (6).
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Figure 4. One-loop contributions to the top quark mass.

sentation, C
F
= 4=3, and

B
n
(p2;m2

1;m
2
2) � (�1)n+1

Z 1

0
dy y

n ln

 
m

2
2y +m

2
1(1� y)� p

2
y(1� y)

�2

!
: (A.2)

The B
n
(n = 0,1) are related to the standard two-point loop functions that arise in

one-loop computations [28]:

B0(p
2;m2

1;m
2
2) � �+ B0(p2;m2

1;m
2
2) ;

B1(p
2;m2

1;m
2
2) � �1

2
�+ B1(p2;m2

1;m
2
2) ; (A.3)

where all occurrences of � � (4�)��(�) are removed in the minimal subtraction pro-
cedure. Note that B0(p

2;m2
1;m

2
2) is invariant under the interchange of m2

1 and m
2
2,

whereas
B1(p

2;m2
2;m

2
1) = �B1(p

2;m2
1;m

2
2)�B0(p

2;m2
1;m

2
2) : (A.4)

In eq. (A.1), � is the arbitrary mass parameter of the MS{scheme. The on-shell top-

quark mass, M
t
, is de�ned by �(2)(6p = M

t
) = 0. It follows that

M
t
= m

t
(�) +

C
F
�
s
m

t

4�

(
4B0(m2

t
;m2

t
; 0) + 2B1(m2

t
;m2

t
; 0)� 1

+ B1(m2
t
;m2

~g;M
2
S
�m

t
X

t
) + B1(m2

t
;m2

~g;M
2
S
+m

t
X

t
)

� m~g

m
t

h
B0(m2

t
;m2

~g;M
2
S
�m

t
X

t
)�B0(m2

t
;m2

~g;M
2
S
+m

t
X

t
)
i)

: (A.5)

In the O(�
s
) terms above, we simply use the generic notation m

t
for the top-quark

mass, since to one-loop accuracy one need not distinguish between �
s
M

t
and �

s
m

t
(�).

As previously noted, the relation between the top-quark mass in the on-shell and DR
schemes is obtained by dropping the �1 (which does not multiply a loop-function) in
eq. (A.5).

Two of the loop functions are easily evaluated: B0(m2
t
;m2

t
; 0) = 2 � ln(m2

t
=�

2)

and B1(m2
t
;m2

t
; 0) = �1

2
[3 � ln(m2

t
=�

2)]. We note the following curious fact. In the

supersymmetric limit (m~t1
= m~t2

= m
t
and m~g = 0) at one-loop, the relation between

the on-shell and DR running top-quark mass evaluated at � = m
t
is precisely the same
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Figure 5. One-loop contributions to the top squark mass.
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as the corresponding relation between the on-shell and MS running top-quark mass in
non-supersymmetric QCD.

Next, we examine the one-loop contributions to the top-squark two-point function

at O(�
s
). The contributing graphs are shown in �g. 5. We immediately note that graph

(c) of �g. 5 vanishes in dimensional regularization. Moreover, since et1 and et2 are states
of de�nite parity in a model where the stop mass-squared matrix is given by eq. (6),

the one-loop mixing of et1 and et2 vanishes to all orders in �
s
. Including the tree-level

contribution, the �nal result for the top squark two-point function is12

e�(2)
jj
(p2) = i(p2 �m

2
~tj
)� iC

F
�
s

�

h
A0(m

2
~g) +m

2
t
B0(p2;m2

t
;m

2
~g)

+p2B1(p2;m2
t
;m

2
~g)� (�1)jm~gmt

B0(p2;m2
t
;m

2
~g)� p

2B1(p2;m2
~tj
; 0)
i
; (A.6)

for j = 1, 2, where

A0(m
2) � m

2

"
1 � ln

 
m

2

�2

!#
(A.7)

is related to the standard one-point loop function A0(m
2) = m

2�+A0(m
2).

There is no distinction in this calculation between the MS and DR schemes. The
on-shell stop squared-masses are de�ned by e�(2)

jj
(p2 = (mOS

~tj
)2) = 0. Noting the form for

the tree-level squared-masses [eq. (7)], it follows that:

M
2;OS
S

�M
t
X

OS
t

= M
2
S
(�)�m

t
(�)X

t
(�) +

C
F
�
s

�

h
f(M2

S
�m

t
X

t
)� g(M2

S
�m

t
X

t
)
i
;

(A.8)
where M

t
is the on-shell top quark mass and

f(p2) � A0(m
2
~g) +m

2
t
B0(p2;m2

t
;m

2
~g) + p

2B1(p2;m2
t
;m

2
~g) ;

g(p2) � m~gmt
B0(p2;m2

t
;m

2
~g) : (A.9)

It is then straightforward to solve for M2;OS
S

and M
t
X

OS
t

in terms of the corresponding
MS quantities evaluated at the scale � = M

S
. Using the notation of eq. (25), we obtain

M
2;OS
S

= M
2
S
+
C
F
�
s

2�

h
f(M2

S
+m

t
X

t
) + f(M2

S
�m

t
X

t
)

�g(M2
S
+m

t
X

t
) + g(M2

S
+m

t
X

t
)
i
; (A.10)

M
t
X

OS
t

= m
t
(M

S
)X

t
+
C
F
�
s

2�

h
f(M2

S
+m

t
X

t
)� f(M2

S
�m

t
X

t
)

�g(M2
S
+m

t
X

t
)� g(M2

S
�m

t
X

t
)
i
; (A.11)

where all loop functions in eqs. (A.10) and (A.11) are evaluated at � = M
S
. Dividing

eq. (A.11) by M
t
, and using eq. (A.5) to evaluate m

t
(M

S
)=M

t
, one obtains a direct

relation between X
OS
t

and X
t
.

12In deriving eq. (A.6), we note that the contribution of �g. 5(d) [only the case i = j yields a non-zero
contribution, which is equal to (iCF�s=4�)A0(m~tj

)] cancels a similar term that arises in the evaluation

of �g. 5(b).
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To obtain the expansions derived in Appendix B, we consider the case of m2
~g =

M
2
SUSY =M

2
S
�m

2
t
. We introduce the following notation:

x
t
� X

t

M
S

; z � M
t

M
S

: (A.12)

We are interested in the limit of z � 1 and x
t
<� 1. First, consider the relation

between the on-shell and running top quark mass. Using eq. (A.2), we must evaluate

the following integrals:

J
(�)
n

=
Z 1

0
dy y

n ln
h
1 � x

t
zy � z

2(1 � y
2)
i
; (A.13)

for n = 0, 1. Eq. (A.5) then yields:

m
t
(M

S
) = M

t

�
1 +

C
F
�
s

4�

�
�4 + 6 ln z � J

(+)
1 � J

(�)
1 +

1

z
(1 � z

2)1=2(J
(+)
0 � J

(�)
0 )

��
:

(A.14)
Expanding out the logarithm in the integrand of J (�)

n
in a double power series in x

t
and

z and integrating term by term, one readily obtains the result given in eq. (B.5).
Second, consider the relation between the on-shell and MS de�nitions of M

S
and

X
t
obtained in eq. (A.10). Using the integral expressions for the loop functions that

appear in eq. (A.9), one must evaluate the following integrals:

I
n
=
Z 1

0
dy y

n ln
h
y
2(1 � zx

t
) + yz(x

t
� 2z) + z

2
i
; (A.15)

for n = 0, 1. In this case, one cannot simply expand the logarithms about x
t
= z = 0,

since the integration range extends down to y = 0. Instead, we have used Mathematica

to evaluate the integral exactly, and then perform the double expansion in x
t
and z.

The result for I0 up to O(x2
t
z
4) is

I0 = �2 + �z + z
2(2 ln z � 1) � 1

2
�z

3 + 1
2
z
4

+x
t

h
�z � z ln z + �z

2 + z
3(2 ln z � 1

2
)� 1

2
�z

4
i

+x2
t

h
�1

8
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16
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2
)
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1
12
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8
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3(ln z + 11

12
) + 15

16
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4
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+x4
t

h
� 1

128
�z + 1

12
z
2 � 35

256
�z

3 � z
4(ln z + 11

12
)
i
: (A.16)

We have checked the validity of this expansion using numerical integration. One can
derive a similar expression for I1 either directly, or by noting that:

I1 =
1

2(1 � zx
t
)

h
z
2(1 � 2 ln z)� (1� z

2)[1� ln(1 � z
2)]� z(x

t
� 2z)I0

i
= �1

2
� z

2(ln z + 3
2
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4(2 ln z � 3

4
)

+ x
t
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1
2
z � 1

2
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3(3 ln z + 2) + 9
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t
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1
2
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2(ln z + 2)� 9

8
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+ x
3
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h
1
16
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3(ln z + 19

12
)� 55

32
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4
i

+ x
4
t

h
� 1

24
z
2 + 15

128
�z

3 + z
4(3

2
ln z + 17

8
)
i
: (A.17)
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Inserting these results into eqs. (A.10) and (A.11), and expanding out the remaining
factors [e.g., m~gmt

= M
2
S
z(1 � z

2)1=2, etc.], one ends up with the results given in

eqs. (B.3) and (B.4).

Appendix B: Results up to O
�
m4

t
=M4

S

�
We list the necessary formulae in order to derive the results given in sections 3 and 4

up to terms of O (m4
t
=M

4
S
). As before, we de�ne x

t
� X

t
=M

S
and z � m

t
=M

S
. In the

approximation discussed in section 3, we obtain expansions that are valid in the limit

of z � 1 and x
t
<� 1.

The diagrammatic result in the on-shell scheme for the one-loop and two-loop con-

tributions to m2
h
, in the approximations used in this paper, is given up to O(z4) by

m
2;�
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=
3

2
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F
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2

�2
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4
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(B.1)
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�)
: (B.2)

Eq. (B.2) is a generalization of the corresponding formula given in ref. [16].

The relations between the MS parametersM
S
and X

t
[eq. (25)] and the correspond-

ing on-shell parameters MOS
S

, XOS
t

can be obtained from eqs. (A.10) and (A.11) using
the expansions of eqs. (A.16) and (A.17). The end result up to O(z4) is given by
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; (B.3)
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t
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t
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t
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)
: (B.4)

To complete the evaluation of X
t
we need to �nd a relation between the on-shell

top-quark mass, M
t
, and the running top-quark mass, m

t
(M

S
), evaluated at the scale
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M
S
. Using eq. (A.14), one obtains the following expansion:

m
t
(M

S
) = M

t

�
1 +

�
s

3�

h
�4 + 6 ln z + x

t
+ z

2
�
1
2
+ 1
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24
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12
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3
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12
x
4
t
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15
x
5
t

�io
: (B.5)

Eq. (B.5) was derived using DREG. In order to obtain the corresponding formula using
DRED (which yields a formula for the top-quark mass in the DR scheme), simply replace

�4 with �5 in the �rst term of eq. (B.5) after the left square bracket.

Note that eq. (B.5) provides a connection between m
t
(M

S
) and the on-shell mass

M
t
in the full supersymmetric theory. In the limit of large M

S
with �xed X

t
=M

S
,

the threshold correction arising from the stop mixing e�ects does not vanish. On the

other hand, the MS top-quark mass, m
t
� m

MS
t;SM(Mt

) is de�ned in the low-energy (non-
supersymmetric) e�ective theory via eq. (3). Thus, in eq. (B.5), we may replace M

t

with m
t
simply by removing the factor of �4�

s
=3�. To leading order in m

t
=M

S
, one

immediately obtains eq. (43).
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